Optimization of Cutting Insert Geometry Using Deform-3d: Numerical Simulation and Experimental Validation

نویسنده

  • Senthil Kumar
چکیده

In this research work an attempt has been made to minimize flank wear of uncoated carbide inserts while machining AISI 1045 steel by finite element analysis. Tool wear is the predominant factor that causes poor surface finish and is responsible for the dimensional accuracy of the machined surface. The quality of component produced decides the effectiveness and competitiveness of any manufacturing industry. In this analysis, the effect of tool geometries on performance measures of flank wear, surface roughness and cutting forces generated are evaluated. Three levels of cutting insert shape, relief angle and nose radius are chosen. Taguchi’s Design of experiment (DOE) is used to design the experiments. For three parameters and three levels a suitable L9 Orthogonal array is selected. Based on the designed experiment, simulation analysis is carried out using DEFORM-3D, a machining simulation and analysis software and the output quality characteristics are analysed by statistical techniques like Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA). A validation finite element simulation is conducted with the obtained optimum tool geometry, which is also verified experimentally. It is observed that the performance of the determined tool geometry provides satisfactory results. (Received in August 2011, accepted in November 2011. This paper was with the authors 1 month for 1 revision.)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulation of effects of machining parameters and tool geometry using DEFORM-3D: Optimization and experimental validation

This research work focusses on optimization of machining and geometrical parameters during turning AISI 1045 steel using carbide cutting tool insert, by Finite Element Analysis and Taguchi’s Technique. Three levels of cutting speed, feed rate, depth of cut, cutting insert shape, relief angle and nose radius are chosen. A suitable L18 Orthogonal array is selected based on Taguchi’s Design of Exp...

متن کامل

Evaluation of Disc Cutter Performance in Rock Cutting Process Using 3D Finite Element Method

Today, numerical simulation can be used as a suitable tool to measure large quantities that are very expensive and, in some cases, impossible to measure. One of the important issues in predicting rock mass boreability in excavation with full face tunnel boring machines is estimating the discchr('39')s forces for rock cutting. For this purpose, the linear cutting test is  employed. However, limi...

متن کامل

Abstracts Volume 11 Number 2

In this research work an attempt has been made to minimize flank wear of uncoated carbide inserts while machining AISI 1045 steel by finite element analysis. Tool wear is the predominant factor that causes poor surface finish and is responsible for the dimensional accuracy of the machined surface. The quality of component produced decides the effectiveness and competitiveness of any manufacturi...

متن کامل

Optimization of Fan Geometry for Urban Train Traction Motors using Coupled Numerical Electromagnetic and Thermal Analysis

One of the most important parameters in designing electrical motors is heat generation by the motor and the way it is dissipated. Temperature rising reduce efficiency and reliability of traction motors and leads to failure. In this paper, an urban train traction motor in a 3D computational fluid dynamics (CFD) simulation has been investigated. Maxwell software for electromagnetic simulation and...

متن کامل

Optimization of Heat Transfer Enhancement of a Domestic Gas Burner Based on Pareto Genetic Algorithm: Experimental and Numerical Approach

The present study attempts to improve heat transfer efficiency of a domestic gas burner by enhancing heat transfer from flue gases. Heat transfer can be augmented using the obstacles that are inserted into the flow field near the heated wall of the domestic gas burner. First, to achive the maximum efficiency, the insert geometry is optimized by the multi-objective genetic algorithm so that heat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013